Extensions 1→N→G→Q→1 with N=C22 and Q=C22xC4

Direct product G=NxQ with N=C22 and Q=C22xC4
dρLabelID
C24xC464C2^4xC464,260

Semidirect products G=N:Q with N=C22 and Q=C22xC4
extensionφ:Q→Aut NdρLabelID
C22:1(C22xC4) = C2xC4xD4φ: C22xC4/C2xC4C2 ⊆ Aut C2232C2^2:1(C2^2xC4)64,196
C22:2(C22xC4) = C22xC22:C4φ: C22xC4/C23C2 ⊆ Aut C2232C2^2:2(C2^2xC4)64,193

Non-split extensions G=N.Q with N=C22 and Q=C22xC4
extensionφ:Q→Aut NdρLabelID
C22.1(C22xC4) = C4xC4oD4φ: C22xC4/C2xC4C2 ⊆ Aut C2232C2^2.1(C2^2xC4)64,198
C22.2(C22xC4) = C22.11C24φ: C22xC4/C2xC4C2 ⊆ Aut C2216C2^2.2(C2^2xC4)64,199
C22.3(C22xC4) = C23.33C23φ: C22xC4/C2xC4C2 ⊆ Aut C2232C2^2.3(C2^2xC4)64,201
C22.4(C22xC4) = C2xC8oD4φ: C22xC4/C2xC4C2 ⊆ Aut C2232C2^2.4(C2^2xC4)64,248
C22.5(C22xC4) = Q8oM4(2)φ: C22xC4/C2xC4C2 ⊆ Aut C22164C2^2.5(C2^2xC4)64,249
C22.6(C22xC4) = C2xC23:C4φ: C22xC4/C23C2 ⊆ Aut C2216C2^2.6(C2^2xC4)64,90
C22.7(C22xC4) = C23.C23φ: C22xC4/C23C2 ⊆ Aut C22164C2^2.7(C2^2xC4)64,91
C22.8(C22xC4) = C2xC4.D4φ: C22xC4/C23C2 ⊆ Aut C2216C2^2.8(C2^2xC4)64,92
C22.9(C22xC4) = C2xC4.10D4φ: C22xC4/C23C2 ⊆ Aut C2232C2^2.9(C2^2xC4)64,93
C22.10(C22xC4) = M4(2).8C22φ: C22xC4/C23C2 ⊆ Aut C22164C2^2.10(C2^2xC4)64,94
C22.11(C22xC4) = C2xC42:C2φ: C22xC4/C23C2 ⊆ Aut C2232C2^2.11(C2^2xC4)64,195
C22.12(C22xC4) = C23.32C23φ: C22xC4/C23C2 ⊆ Aut C2232C2^2.12(C2^2xC4)64,200
C22.13(C22xC4) = C2xC2.C42central extension (φ=1)64C2^2.13(C2^2xC4)64,56
C22.14(C22xC4) = C42:4C4central extension (φ=1)64C2^2.14(C2^2xC4)64,57
C22.15(C22xC4) = C4xC22:C4central extension (φ=1)32C2^2.15(C2^2xC4)64,58
C22.16(C22xC4) = C4xC4:C4central extension (φ=1)64C2^2.16(C2^2xC4)64,59
C22.17(C22xC4) = C2xC8:C4central extension (φ=1)64C2^2.17(C2^2xC4)64,84
C22.18(C22xC4) = C4xM4(2)central extension (φ=1)32C2^2.18(C2^2xC4)64,85
C22.19(C22xC4) = C8o2M4(2)central extension (φ=1)32C2^2.19(C2^2xC4)64,86
C22.20(C22xC4) = C2xC22:C8central extension (φ=1)32C2^2.20(C2^2xC4)64,87
C22.21(C22xC4) = C2xC4:C8central extension (φ=1)64C2^2.21(C2^2xC4)64,103
C22.22(C22xC4) = C42.12C4central extension (φ=1)32C2^2.22(C2^2xC4)64,112
C22.23(C22xC4) = C8xD4central extension (φ=1)32C2^2.23(C2^2xC4)64,115
C22.24(C22xC4) = C8xQ8central extension (φ=1)64C2^2.24(C2^2xC4)64,126
C22.25(C22xC4) = C22xC4:C4central extension (φ=1)64C2^2.25(C2^2xC4)64,194
C22.26(C22xC4) = C2xC4xQ8central extension (φ=1)64C2^2.26(C2^2xC4)64,197
C22.27(C22xC4) = C22xM4(2)central extension (φ=1)32C2^2.27(C2^2xC4)64,247
C22.28(C22xC4) = C24:3C4central stem extension (φ=1)16C2^2.28(C2^2xC4)64,60
C22.29(C22xC4) = C23.7Q8central stem extension (φ=1)32C2^2.29(C2^2xC4)64,61
C22.30(C22xC4) = C23.34D4central stem extension (φ=1)32C2^2.30(C2^2xC4)64,62
C22.31(C22xC4) = C42:8C4central stem extension (φ=1)64C2^2.31(C2^2xC4)64,63
C22.32(C22xC4) = C42:5C4central stem extension (φ=1)64C2^2.32(C2^2xC4)64,64
C22.33(C22xC4) = C42:9C4central stem extension (φ=1)64C2^2.33(C2^2xC4)64,65
C22.34(C22xC4) = C23.8Q8central stem extension (φ=1)32C2^2.34(C2^2xC4)64,66
C22.35(C22xC4) = C23.23D4central stem extension (φ=1)32C2^2.35(C2^2xC4)64,67
C22.36(C22xC4) = C23.63C23central stem extension (φ=1)64C2^2.36(C2^2xC4)64,68
C22.37(C22xC4) = C24.C22central stem extension (φ=1)32C2^2.37(C2^2xC4)64,69
C22.38(C22xC4) = C23.65C23central stem extension (φ=1)64C2^2.38(C2^2xC4)64,70
C22.39(C22xC4) = C24.3C22central stem extension (φ=1)32C2^2.39(C2^2xC4)64,71
C22.40(C22xC4) = C23.67C23central stem extension (φ=1)64C2^2.40(C2^2xC4)64,72
C22.41(C22xC4) = C24.4C4central stem extension (φ=1)16C2^2.41(C2^2xC4)64,88
C22.42(C22xC4) = (C22xC8):C2central stem extension (φ=1)32C2^2.42(C2^2xC4)64,89
C22.43(C22xC4) = C4:M4(2)central stem extension (φ=1)32C2^2.43(C2^2xC4)64,104
C22.44(C22xC4) = C42.6C22central stem extension (φ=1)32C2^2.44(C2^2xC4)64,105
C22.45(C22xC4) = C42.6C4central stem extension (φ=1)32C2^2.45(C2^2xC4)64,113
C22.46(C22xC4) = C42.7C22central stem extension (φ=1)32C2^2.46(C2^2xC4)64,114
C22.47(C22xC4) = C8:9D4central stem extension (φ=1)32C2^2.47(C2^2xC4)64,116
C22.48(C22xC4) = C8:6D4central stem extension (φ=1)32C2^2.48(C2^2xC4)64,117
C22.49(C22xC4) = C8:4Q8central stem extension (φ=1)64C2^2.49(C2^2xC4)64,127

׿
x
:
Z
F
o
wr
Q
<